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Abstract—Many science applications that use wide area net-
works are response-critical, meaning that they need data to be
delivered by a deadline. Yet the state of the art in science
networks is best-effort, i.e., transfers are scheduled as they are
submitted, with no assurance of completion time or transfer
rate. Building on the observation that both the start time and
concurrency associated with a given transfer can be controlled,
we formulate a bi-objective file transfer scheduling problem. With
value functions used to capture the importance and urgency
of response-critical transfers, we aim to (a) maximize the ag-
gregate value provided to response-critical transfers, while (b)
minimizing average slowdown for other transfers. We present
an algorithm, RESEAL, that provides differentiated service to
transfers with timing constraints by controlling the scheduled
load at the transfer endpoints, while also minimizing the impact
of those transfers on other (best-effort) transfers by delaying
time-constrained transfers, where useful, so that they complete
as close as possible to their optimal completion times (time after
which their value starts to decrease). We evaluate RESEAL in
a production wide-area network environment using real-world
transfer logs. We show that the algorithm can allow response-
critical transfers to achieve an aggregate value of 90% of their
maximum aggregate value, even when the total load on the
network is as high as 60%, with only 9% slowdown for best-
effort tasks. Our results suggest that the needs of response-critical
applications can be met without resource reservations.

I. INTRODUCTION

Data movement is an essential component of distributed
science [7], [23]. As data volumes increase, traditionally
single-institutional science workflows increasingly use remote
computational resources for analysis, visualization, and archival
purposes [8], [14]. Thus, workflow performance becomes
dependent on wide-area data transfer efficiency. The current
state of the art in data movements can be described as best-
effort—each transfer is scheduled as it is requested, without
considerations of its impact on other transfers and without any
differentiation between different transfer types [4].

Our focus in this paper is on use cases in which data transfers
have timing constraints. One example is the remote analysis of
experimental data that can guide the selection of parameters
for the next experiment or even influence the course of the
current experiment. Another example is the transfer of input
data for a computation that has already acquired computational
resources. Currently available tools for data movement in the
high-performance computing (HPC) environment, such as the
Globus transfer service [4], GridFTP [2], BBCP [6], and HPN-
SCP [24], have not been designed to provide the differentiated
service required by such transfers, although other forms of
optimizations on data transfers have been applied [15], [11].

More broadly, differentiated mechanisms for scheduling file
transfers have received only little attention [18].

One approach to catering to the requirements of response-
critical transfers is resource reservation. A number of projects
support the provisioning of dedicated network channels [22],
[40], [35], [42]. Advanced networks such as ESnet, Internet2,
and GEANT provide the capability to create virtual circuits and
reserve bandwidth on the wide-area network. This capability
has been used to improve the performance of wide-area data
transfers in certain environments [39], [31]. Foster et al. [18]
used advance reservation and co-reservation of heterogeneous
resources for end-to-end quality of service. StorNet [21] uses
co-reservation of storage and network resources to provide
guaranteed disk-to-disk data transfer performance.

We describe here a different, application-level approach
to providing differentiated services for file transfers, based
on controlling when transfers are initiated and the degree of
concurrency allocated to each transfer. We classify transfer
requests as best-effort (BE) or response-critical (RC). A BE
task needs only to be transferred as soon as possible, whereas
an RC task has time constraints. We use a model to estimate
the external load on the link over which a transfer is to be
performed, and we adjust the concurrency level to control the
throughput achieved for each transfer [28]. For RC tasks, we
use a value function to capture both the maximum value if the
task is completed within a specified window and its decay if
the task is delayed beyond that window.

With this background, we formulate a bi-objective scheduling
problem, where the goal is to both maximize the aggregate
value for RC transfers and minimize the average slowdown for
BE transfers. Building on the SEAL (SchEduler Aware of Load)
load-aware transfer scheduling algorithm developed in previous
work [29], we develop a new algorithm for this bi-objective
problem. SEAL minimizes the average slowdown across all
transfers by monitoring external load and then controlling
scheduled load so as to maximize the utilization of available
resources without overloading them. The new algorithm,
Response-critical Enabled SEAL: RESEAL, accommodates RC
tasks in addition to BE tasks. It provides appropriate levels
of service to RC tasks by controlling concurrency levels at
file transfer sources and destinations. Moreover, it minimizes
slowdown for BE tasks by scheduling them ahead of those RC
tasks that can be delayed without losing their value.

We experimentally evaluate RESEAL in a production wide-
area network (WAN) environment using real transfer logs under
different load conditions. We show that RESEAL can achieve
96.2%, 87.3%, and 90.1% of the maximum aggregate value
for RC tasks for transfer logs with loads 25%, 45%, and
60%, respectively, with only 2.6%, 9.8% and 8.9% increase
in slowdown for BE tasks. We also find that load variation in



the logs impacts performance significantly. For example, in
a log with 45% average load but relatively higher variation
in load over time, the achieved value for RC tasks is 87.3%
of the maximum aggregate and the relative slowdown of BE
tasks is 9.8%. These two values improve to 92.7% and 5.8%,
respectively, in another log where the average load is still 45%
but the variation in load over time is lower.

II. MOTIVATION

We provide more background on the need for response-
critical wide-area data transfer and discuss potential approaches
to meeting these needs.

A. Motivating Science Cases

The need to ensure timely completion of data transfers
arises in multiple science communities [23], [1], [7], [8]. Many
relevant science cases involve an instrument that produces
data: as data volumes (and thus computational requirements)
increase at light sources, fusion reactors, and other experimental
facilities, sufficient computing power is no longer available
locally. Thus, researchers need to depend on remote computing
facilities. Data transfer and analysis must happen in a timely
manner in order to check results, adjust the experimental setup,
and maximize the use of experimental facilities.

Another use case arises because of the emergence of clouds.
For example, government agencies are funding on-demand
compute resources (e.g., Magellan [37], Jetstream [27], and
Bridges [9]) to meet the emerging response-critical analysis
requirements. But we need mechanisms to move data between
experimental facilities and compute facilities in a scheduled
manner to use such resources for data-intensive applications. As
a specific example, scientists from Pacific Northwest National
Laboratory (PNNL) use x-ray tomography at the Advanced
Photon Source at Argonne National Laboratory (ANL) for high
resolution imaging. Each experiment generates several giga-
bytes of data. They need to process each new sample rapidly
in order to make decisions that affect subsequent samples.
Such analysis can be done on the on-demand computational
environment at PNNL. However, data must first be moved from
ANL to PNNL within a fixed time, and then results moved
back to ANL.

B. Resource Reservations

Some studies have used network reservation to achieve high
throughput for wide-area transfers in certain scenarios [39],
[31]. We argue that this approach is neither effective nor
efficient. To the former, wide-area network is only one of
the many resources involved in the end-to-end file transfer;
local network at the facilities, data transfer node, storage
area network, and storage system resources are all shared
resources involved in the data transfer. In other words, reserving
only the wide-area bandwidth is not sufficient to address the
requirements of response-critical file transfer use cases in
general. This situation has been validated in a study by Liu
et al. [36]; more specifically, it is claimed that CPU resources
on the data transfer nodes must be reserved and contention
for disk I/O must be eliminated. Other studies have used co-
reservation of network and storage resources to achieve quality
of service for wide-area data transfers [21]. In the current HPC
environment, most common deployments have data transfer
nodes and compute nodes mount a global shared parallel storage
system, which is connected through a storage area network [13],
[30], [36]. In such scenarios, one cannot ensure contention-free
access to the storage system.
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Fig. 1: WAN traffic pattern of HPC facilities (source: my.es.net)

C. Expoiting Overprovisioning

We now show why reservations may not be necessary for
ensuring response-critical transfers. Backbone networks are
typically overprovisioned in order to sustain peak loads; thus,
they are underutilized most of the time. For example, Internet2
has a policy of operating their network at light loads (25-30%)
to allow the network to absorb surges in traffic [25]. Internet2
has a published backbone upgrade practice of upgrading the
backbone interconnects when the weekly 95th-percentile metric
is reliably above 30% of link capacity. Fig. 1 shows the wide-
area traffic for a one-month period for two HPC facilities with
a 20 Gbps and a 10 Gbps wide-area connection, respectively.
Although the peak rates are as high as 60%, the average is
lower than 30%.

The difficulties of reserving resources and this pattern of
overprovisioning motivate us to pursue an alternative approach
to meeting RC task needs. Specifically, we develop file transfer
scheduling heuristics that provide appropriate levels of service
to RC tasks by controlling the concurrency levels associated
with different transfers. We have shown in previous work
that the allocation of bandwidth to different transfers can be
controlled by varying their concurrency [28]. Here, we leverage
this method to differentially schedule transfers with different
service requirements. This control can be implemented from
the file transfer application at transfer endpoints, and thus it
requires no new features in network devices.

III. PROBLEM DEFINITION AND METRICS

We first present prior work on load-aware scheduling and
then describe the problem that we address here.

A. Precursor Work: SEAL Algorithm

In recent work [29], we developed a load-aware file transfer
scheduling algorithm (SchEduler Aware of Load: SEAL) that
queues, preempts, and dynamically adjusts transfer concurrency
to reduce the average slowdown of file transfer tasks. Slowdown
refers to the factor by which a file transfer is slowed relative
to the time it would take on an unloaded system. Slowdown
(or bounded slowdown), a metric commonly used in parallel
job scheduling [17], is defined as:

BS — Waittime + max (Runtime, bound)

max (Runtime, bound) 0
where bound is a user-defined threshold used to limit the
influence of extremely short jobs on slowdown. SEAL defines
a variant of it to suit the data transfer context (see below) and
uses it as the optimization metric,



Waittime + max (Runtime, bound)

max (T7T;geqr, bound) @
where TT;4cq; 1S the estimated transfer time (TT) under zero
load and ideal concurrency. 7744 1S computed by using a
model developed in previous work [28]. In the rest of this
paper, we refer to BSpr simply as slowdown.

SEAL aims to keep the number of concurrent transfers
just enough to saturate the system. It queues transfers under
high-load conditions and increases the concurrency levels of
individual transfers at low-load conditions. It combines the
observed performance of current transfers and transfer through-
puts estimated with models developed in previous work [28] to
identify system saturation and appropriate concurrency levels.
If the system resources are saturated, SEAL might preempt
one or more active transfers and schedule waiting transfer
requests, in order to reduce the overall average slowdown of
the transfer requests. SEAL has been shown to improve the
average slowdown of transfers by up to 25%.

In this paper, we extend SEAL (which treats all transfer
requests as best-effort) to consider two types of transfer
requests: Response-critical (RC) and best-effort (BE). RC
transfer requests have timing constraints, whereas BE transfer
requests seek best-effort service.

B. Incorporating RC Tasks

Since RC tasks have timing constraints, slowdown by itself
is not a suitable metric for these tasks. Instead, and as has been
done in computation scheduling, we allow users to associate a
utility or value function with each task. This function gives the
value or utility of a task as a function of the task’s slowdown.
Typically, a task’s value will start high but then decline over
time if the task is delayed. A value function thus captures a
task’s importance and urgency.

Fig. 2  shows
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Fig. 2: Example value function
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) otherwise

where

MaxValue = A + log(size), 4)
with size being the size of the file in gigabytes and A a constant
to avoid small jobs being completely unattractive to the system.

Specifically, each RC task has a maximum value (MaxValue)
that is obtained when the task completes with a slowdown
less than or equal to a specified limit (Slowdown,,,.). If the
task’s slowdown goes above the specified limit, the value
decays linearly (Slowdowng is the slowdown at which the
value becomes zero). Hence, we have a bi-objective problem
of maximizing the aggregate value obtained for RC tasks and
minimizing the average slowdown for BE tasks.

C. Metrics

For RC tasks, we aim to maximize the normalized aggregate

aggregate value
value (NAV) ———d4- aggregate value’ where aggregate value

is the actual aggregate value achieved for RC tasks and
maximum aggregate value is the maximum possible aggregate
value for RC tasks.

For BE tasks, we aim to maximize the normalized average
slowdown (NAS) S%[; i —, where S Dp is the average slowdown
for BE tasks when RC tasks were treated as if they were BE
tasks (no special treatment for RC tasks) and SDp, R is the
average slowdown for BE tasks when RC tasks were scheduled
with the goal of maximizing their aggregate value.

D. Problem Formulation

We consider a stream of file transfer requests, each defined by
a seven-tuple: <source host, source file path, destination host,
destination file path, file size, arrival time, value function>.
Requests arrive in an online fashion; that is, future transfer
requests are not known a priori. Requests with a null value
function are BE requests and those with a valid value function
(like that discussed above) are RC requests. Hosts may have
different capabilities (CPU, memory, disk speed, storage area
network, network interfaces, WAN connection), and thus the
maximum achievable end-to-end throughput may differ for
each <source host, destination host> pair. External load at
a source, destination, and intervening network may also vary
over time, as may achievable transfer rates between a source
and destination. Each host (source or destination) has a limit
on the number of concurrent transfers that it can support. Our
goal is to maximize the aggregate value obtained for RC tasks
and minimize the average slowdown for BE transfers.

IV. SCHEDULING ALGORITHM

After presenting our formal problem statement and the
metrics for the bi-objective problem, we now introduce the
algorithm we have developed. We call the new algorithm
Response-critical (or RC) Enabled SEAL: RESEAL.

A. Priority for Best-Effort Tasks

As noted above, RESEAL aims to minimize the average
slowdown for BE transfers. In the implementation, we use the
expected slowdown (also known as expansion factor or xfactor)
of a task at any given time as the priority of the task. We
define the xfactor for a file transfer task as follows,
Waittime + T7Tjoq4 5)

)

T,-rideal
where TTj,qq is the estimated transfer time (TT) under the
current load conditions and 77;4.,; iS the estimated transfer
time under ideal (zero load and ideal concurrency) conditions.
We describe below (Listing 2) how these values are calculated.

xfactor =

B. Priority for Response-Critical Tasks

Since the goal for the RC tasks is to maximize their aggregate
value, we prioritize them based on their value rather than their
xfactor. We consider two approaches. The first approach uses
the MaxValue of an RC task as its priority. The second approach
prioritizes RC tasks based on both their importance and their
urgency, which are measured by their MaxValue and current
expected value, respectively. We define the current expected
value in terms of its xfactor and value function,

expected value = value(xfactor), (6)
and the priority of an RC task as MaxVal
axValue
priority = MaxValue X x (7

max(expected value,0.001)’
where the quotient term specifies how far off the current
expected value of a task is from its MaxValue. The higher
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Fig. 3: Example illustrating RESEAL.

this ratio, the lower the expected value of the task compared
with its MaxValue value and thus the higher its priority. We
multiply this ratio by the MaxValue of the task in order to give
higher priority to tasks with comparatively higher MaxValues.

C. Prioritizing between BE and RC Tasks

Our algorithm needs to prioritize not only within the set
of BE and RC tasks but also between them. For this purpose,
again we consider two approaches. The first approach always
gives higher priority to RC tasks over BE tasks. The waiting
RC tasks are scheduled ahead of waiting BE tasks. If there is a
waiting RC task, it would preempt as many running BE tasks
as needed to enable the RC task to attain the same throughput
it would achieve in the absence of any BE task in the system.
We call this approach Instant-RC.

The second approach is as follows. Since the RC tasks yield
MaxValue as long as they finish with a slowdown less than or
equal to Slowdown,,, 4., RC tasks do not need to be scheduled
upon arrival. Ideally, the RC tasks can be scheduled such that
they finish with a slowdown that is just under (and as close as
possible to) Slowdown,, 4., if it can help minimize the other
objective of minimizing the average slowdown of BE tasks.
Thus, if the xfactor of an RC task is close (for example, >90%)
to Slowdown .., then the RC task is scheduled immediately
with dontPreempt flag set. Otherwise, the RC task is given
lower priority—it will be scheduled to run (without setting
dontPreempt flag) if there is unused bandwidth after all high-
priority RC tasks and BE tasks are scheduled. In addition
to helping minimize the average slowdown of BE tasks, this
approach can help increase the aggregate value for RC tasks.
We call this approach Delayed-RC.

D. Three RESEAL Schemes

We define three schemes based on the ways in which priority
can be defined for and between RC and BE.

Max uses the MaxValue as the priority for RC tasks, and
the Instant-RC approach described above for scheduling RC
and BE tasks.

MaxEx takes into account both the MaxValue and the current
expected value for prioritizing RC tasks. Specifically, it uses
Eqn. 7 to compute the priority for RC tasks. Like Max, it uses
the Instant-RC approach for scheduling tasks.

MaxExNice, like MaxEx, uses Eqn. 7 to compute the priority
for RC tasks. But it then uses the Delayed-RC approach of
8IV-C to schedule RC and BE tasks. It thus minimizes the
impact of RC tasks on BE tasks and other RC tasks. (RC tasks
are nice to other tasks.)

All three schemes use xfactor to prioritize among BE tasks.

E. Detailed Example

We use the example in Fig. 3 to illustrate the differences
among the three RESEAL schemes. The one source and one
destination each have a maximum throughput of 1 GB/s
(8Gbps). Fig. 3(b) shows the wait queue. An RC task RC2
(a 2 GB file) and a BE task BE1 (a 1 GB file) arrive at the
time ¢ = x + 1. Another RC task RC1 (a 1 GB file) has been
waiting in the wait queue (it did not get scheduled because
the source and destination were saturated with other RC tasks).
At time t = = + 1, all other tasks complete, and only RCl,
RC2, and BEI1 need to be scheduled. Let the xfactor of RC1
be 2.35 at t = x + 1. The xfactor of both RC2 and BEI is 1
at t = x + 1, since they both just arrived at t = = + 1. Let us
assume that no more tasks arrive until t = x + 5.

Fig. 3(a) shows how the expected value changes as a
function of xfactor for RC1 and RC2 as well as how the
priority changes as a function of xfactor for the three schemes.
Fig. 3(c) shows the schedule for the Max scheme. It schedules
all RC tasks in the wait queue before considering BE tasks
(unless the aggregate bandwidth for RC tasks is limited to
a certain percentage of the maximum bandwidth at source
and/or destination and that limit is reached: see §IV-F). Max
prioritizes RC tasks based on their MaxValue. The MaxValue
for RC1 and RC2 are 2 and 3, respectively, assuming A = 2
(see Eqn. 4). Hence, the algorithm schedules RC2 first, RC1
next and then BEI.

Fig. 3(d) shows the MaxEx schedule. Like Max, MaxEx
schedules all RC tasks in the wait queue before considering
BE tasks. But it incorporates the expected value of RC tasks in
computing the priority for them (see Eqn. 7). As noted above,
the MaxValue for RC1 and RC2 are 2 and 3, respectively.
The xfactor for RC1 and RC2 are 2.35 and 1, respectively.
Thus, we get an expected value of 1.3 and 3 for RC1 and
RC2, respectively (see Fig. 3(a)). Substituting these values in
Eqn. 7, the priority for RC1 and RC2 at ¢t = x + 1 are 3.07 (2
x 2/1.3) and 3 (3 x3/3), respectively. Thus, MaxEx schedules
RC1 first, RC2 next, and then BEI.

Fig. 3(e) shows the MaxExNice schedule. MaxExNice, like
MaxEx, uses Eqn. 7 to prioritize RC tasks, but schedules BE
tasks ahead of RC tasks (even if the bandwidth limit for RC
tasks is not reached) if an RC task’s xfactor is not close to
or greater than its Slowdown,,,, (that until which the RC
task retains its MaxValue). In this example, Slowdown, .. is
assumed to be 2 and Slowdowny (that at which the RC task’s
value becomes zero) is assumed to be 3.



Listing 1 Scheduler, ScheduleHighPriorityRC, ScheduleBE,
and ScheduleLowPriorityRC functions

1: function SCHEDULER(NT)

2:  W.enqueue(NT)

3:  Remove all completed tasks from R
4:  for task € R,W do

5: UpdatePriority(task)

6: end for

7. if IW.isEmpty() then

8: ScheduleHighPriorityRC()

9: ScheduleBE()

10: ScheduleLowPriorityRC()

11:  else

12: Up cc for RC tasks if not sat and not sat,.
13: Up cc for BE tasks if not sat

14:  end if

15: end function

16: function SCHEDULEHIGHPRIORITYRC( )

17: T = RC Tasks in R U W with dontPreempt not set
18:  Sort 7" in descending order of fask.priority

19:  for task = T.peek() do

20: continue if task.xfactor < 0.9 x Slowdown g,

21: if not sat,. then

22: R* = Tasks in R with dontPreempt set

23: goalThr + FindThrCC(task, false)[1] s.t. R=R™
24: Adjust goalThr to respect RC bandwidth limits
25: Preempt task if task € R

26: CL + TasksToPreemptRC(rask, goalThr)

27: Preempt tasks in C'L and schedule task

28: task.dontPreempt= true

29: end if

30:  end for
31: end function

32: function SCHEDULEBE( )

33:  for task = W.peek() s.t. task is BE do
34: CLsre = CLgst = |]

35: if not sat or isSmall(task) or task.dontPreempt then
36: Schedule task

37: else

38: C L. + TasksToPreemptBE(src, rask)

39: CLgst < TasksToPreemptBE(dst, task)

40: Preempt tasks in C'L4,.. U C Ly and schedule fask
41: end if

42:  end for
43: end function

44: function SCHEDULELOWPRIORITYRC( )
45:  for task = W.peek() s.t. task is RC do
46: Schedule task if not sat and not sat,.
47:  end for

48: end function

MaxExNice thus schedules RC1 first since its priority is
greater than that of RC2 and its xfactor is greater than its
Slowdown,,q,, BEI next at t = x 4+ 2 as RC2’s xfactor is
still much less than its Slowdown,, .., and then RC2. The
aggregate value for RC1 and RC2 is 0.3, 4.3, and 4.3 for Max,
MaxEx, and MaxExNice, respectively. The slowdown for BE1
is 4, 4, and 2 for Max, MaxEx, and MaxExNice, respectively.
MaxExNice outperforms the other two schemes.

TABLE I: Summary of terms used.

Item Description
NT Set of new tasks
R Priority queue of running tasks (ascending xfactor)
w Priority queue of waiting tasks (descending xfactor)
TTioad Transfer time under current load (based on model)
TTideal Ideal transfer time (based on model)

Tirans Time the task has not been idle so far
T fthresh xfactor threshold to disable preemption for BE tasks

cc Concurrency

size Transfer size

value() Value function of an RC task

B8 User-defined variable for increasing concurrency

mazCC Maximum concurrency allowed for a task

sat Boolean - true means src or dst is saturated

Satye Boolean - true means RC bandwidth limit reached
for src or dst

throughput | Function to estimate throughput based on a model

Listing 2 UpdatePriority, ComputeXfactor, and FindThrCC
functions

49: function UPDATEPRIORITY (fask)

50:  if task is BE then

51 task.priority<—task.xfactor<—ComputeXfactor(fask)
52: task.dontPreempt= true if task.xfactor> xf,, .,

53:  else if rask is RC then

54: R’ = Tasks in R s.t. task.dontPreempt is true

55: task.xfactor<— ComputeXfactor(task) s.t. R = R’
56: task.priority: task.value(1) X task.value(1)

task.value(task.xfactor)

57:  end if
58: end function

59: function COMPUTEXFACTOR(task)
60: lidealCC, idealThr] <+ FindThrCC(task, true)
61: [bestCC, bestThr] < FindThrCC(task, false)

task.num_bytes_total
62: TTitear = ideal;'hr

task.num_bytes_left
63 TTjpuq = “EMILAL 4 ya5k TT rans
task WT+TTpa

64: return T

65: end function

66: function FINDTHRCC (task, forldealThr)
67:  thr=0; cc=0; dstload=srcload=0

68:  if | forldealThr then

69: dstload = dst.cc; srcload = src.cc

70:  end if

71:  do

72: bestThr = thr; cc++

73: thr<— throughput(src, dst, cc, srcload, dstload, size)

74:  while (thr > bestThr x3) and (cc < maxCC)
75:  return [cc, bestThr]
76: end function

F. Formal Description

Listings 1 and 2 present the RESEAL algorithm. Table I
describes the main data structures and terms.

Before continuing with the description of the algorithm,
we explain two important issues: concurrency and prediction
models. We use concurrency while transferring a file (in
most cases) to improve performance. Specifically, to achieve
concurrency at network, CPU and storage, our implementation
exploits Globus GridFTP’s support for partial file transfer (i.e.,
transfer X bytes of data from offset ¥). We use this feature



to perform multiple independent transfers, each of a partial
file. We ensure that the partial transfer sizes are at least as
big as the bandwidth-delay product of the given network link,
in order to avoid additional overhead. Note that concurrency
is related to, yet distinct from, parallelism—the latter implies
using multiple TCP streams in parallel to accelerate transfers,
and is used in Globus GridFTP [2] (and other tools such as
BBCP [6]). Concurrency, unlike parallelism, exploits multiple
CPUs more and helps with storage I/O performance as well.

One challenge is predicting how transfer performance
improves as a function of concurrency. The RESEAL algorithm
leverages a model from our previous work [28] to estimate
transfer throughput. This model, trained offline with historical
data, is used by the function throughput in Listing 2, line
73. It estimates throughput for a transfer given the desired
concurrency level, known load (from ongoing transfers) at
source and destination, and transfer size. It then applies a
correction to account for current external (unknown) load,
computed by comparing the historical data and the performance
of recent transfers for the particular source-destination pair.

Now, we return to the description of the algorithm. The
scheduling cycle repeats every n seconds; NI' contains all new
tasks that arrived in those n seconds. (In our implementation,
n = 0.5.) At the start of each cycle, completed tasks are
removed from the run queue R, new tasks are added to the
wait queue W, and xfactor and priority values are updated
for both BE and RC tasks. For BE tasks, the xfactor is
computed by Eqn. 5, considering all tasks in R. For RC
tasks, xfactor is computed by Eqn. 5, but considering only the
preemption-protected tasks in R (as RC tasks can preempt all
non-preemption-protected tasks in R if needed). Next, priority
is computed for all tasks. For BE tasks it is the same as xfactor,
whereas for RC tasks Eqn. 7 is used. In order to prevent
starvation of BE tasks, preemption of BE tasks is disabled if
their xfactor exceeds a certain threshold. (See Listing 1, lines
3—6 and the functions in Listing 2.)

The first step is to schedule the high-priority RC tasks in W
(ones whose xfactor is greater than or close to Slowdown, g ).
If the aggregate throughput of RC tasks is less than the product
of \ (a user-defined fraction, 0 < X\ < 1, to limit bandwidth
for RC tasks) and the maximum achievable throughput for both
source and destination (i.e., sat,. is false), RESEAL schedules
one or more high-priority RC tasks that are either waiting to
run or running as low-priority RC tasks (the priority has since
increased). These jobs are scheduled in descending order of
their priority. The algorithm makes each RC task achieve a
throughput that it would achieve if high-priority RC tasks in
R and preemption-protected BE tasks (ones whose xfactor has
exceeded a user-defined threshold) in R were the only tasks
in the system, subject to the user-defined bandwidth limits
(via A described above) for RC tasks. We call this throughput
the goal throughput for the RC task under consideration and
compute this value using the model we referred to above.
RESEAL preempts as many non-preemption-protected tasks as
needed—the TasksToPreemptRC function identifies these tasks
by computing the estimated throughput of the given RC tasks
when non-preemption-protected running tasks are removed
incrementally. The algorithm uses appropriate concurrency for
the RC task (determined by using the model) to get a throughput
as close to the goal throughput as possible. Preemption is also
disabled for each scheduled high-priority RC task.

The algorithm next schedules the BE tasks in W in
descending order of xfactor. If neither the task’s source nor
destination is saturated or if the task is small (<100 MB) or if
the task’s xfactor exceeds a threshold (dontPreempt flag is set),

the algorithm schedules the task with appropriate concurrency
(Function ScheduleBE in Listing 1, lines 35, 36). A task’s
concurrency is determined by using the FindThrCC function
in Listing 2. If the waiting task’s source and/or destination
is saturated, then the algorithm considers preempting tasks
associated with the waiting task’s source and/or destination
that are not preemption-protected. Among such tasks in R,
it preempts one or more tasks whose xfactor is lower than
that of the waiting task by a user-defined preemption factor
pf (Listing 1, function ScheduleBE, lines 37-41). Function
TasksToPreemptBE identifies candidate tasks to preempt in R.
If the xfactor of a task in R is lower than that of the waiting
task by pf or more, the running task is added to the candidate
list (CL). The waiting task’s xfactor is then recalculated but
using a version of R that does not include the tasks in CL. If
the new xfactor is sufficiently low, there are enough tasks in
CL. Otherwise, this process is repeated until either CL is large
enough or no more tasks are available for preemption.

Next, RESEAL schedules the low-priority RC tasks in W.
Each is scheduled only if the source and the destination of
the tasks are not saturated and the aggregate throughput of
the RC tasks associated with the source and destination is
under the allowed bandwidth limit for RC tasks (Listing 1,
function ScheduleLowPriorityRC). If there are no queued tasks
for a scheduling cycle (i.e., W is empty), RESEAL ensures
that any unused bandwidth, whether due to tasks completing
or to reduction in external load, is used.

For this, we first consider the RC tasks in R in descending
order of priority, and we increase their concurrency if their
source and destination are not saturated and the aggregate
throughput of the RC tasks associated with the source (and
destination) is under the allowed bandwidth limit for RC tasks.
Then, the algorithm considers the BE tasks in R in descending
order of priority and increase their concurrency if their source
and destination are not saturated (Listing 1, lines 11-14).

To determine whether the aggregate observed throughput of
RC tasks exceeds A x the maximum possible throughput at
either the source or the destination (i.e., to determine whether
sat,. 1s true or false), we maintain a moving five-second average
of observed throughput for each transfer. This moving average
is also used for determining whether an endpoint is saturated
or not. We conclude that an endpoint F is saturated if either
of the following is true: (a) aggregate observed throughput
for all transfers involving that endpoint is close (>95%) to
the maximum possible throughput, as revealed by previous
empirical measurements (or historical data); or (b) increased
concurrency results in a proportionately insignificant increase
in estimated throughput on three active links (less if fewer are
active) involving that endpoint, meaning that if concurrency
is increased by a factor F', throughput is increased only by a
factor of 0.25 x F' or less. This is how we determine whether
sat (in Table I and Listing 1) is true or false.

The pseudocode in Listings 1 and 2 is for RESEAL-
MaxExNice. The pseudocode for RESEAL-MaxEX can be
derived by removing line 20 in the function ScheduleHigh-
PriorityRC and omitting the function ScheduleLowPriorityRC,
which is no longer needed since all RC tasks that can be
scheduled within the RC bandwidth limits will be scheduled in
the function ScheduleHighPriorityRC itself. The pseudocode
for RESEAL-Max scheme can derived by making the following
changes on top of the changes mentioned above for RESEAL-
MaxEx: In Listing 1, function UpdatePriority, replace line 54
with R’ = R and line 56 with task.priority = task.value(1).

Functions ScheduleBE, TasksToPreemptBE, ComputeXfac-
tor, and FindThrCC form the SEAL algorithm. The rest of the
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pseudocode is the new addition for RESEAL algorithm.

V. EXPERIMENTAL EVALUATION

We evaluated RESEAL with real traces in a wide-area
environment using the Globus implementation [2] of the
GridFTP [3] file transfer protocol. Although we evaluated
our algorithms in the context of FTP, the scheduling problem
that we consider is more general, and our algorithm is generally
applicable for any data movement protocol.

Our goal is to evaluate the benefits of an algorithm that
separates response-critical and best-effort transfers. To this end,
we compare RESEAL with SEAL and a baseline algorithm
BaseVary that varies concurrency based on file size. Although
simple, BaseVary is a significant improvement over current
practice in wide-area file transfers, where parallelism is
exploited only on the network side for an individual file.
We also examine whether, as we intend, RESEAL can meet
response-critical transfer needs without a significant negative
impact on best-effort transfers as total load is varied.

A. Environment

We conducted our experiments in a wide-area environment
of six endpoints, each a data transfer node on a supercomputer:

Stampede at the Texas Advanced Computing Center; Blacklight
at the Pittsburgh Supercomputing Center; Darter at the Univer-
sity of Tennessee; Gordon at the San Diego Supercomputer
Center; Mason at Indiana University; and Yellowstone at the
National Center for Atmospheric Research. Each has a 10
Gbps WAN connection and is dedicated for wide-area data
transfer. Stampede can achieve >9 Gbps aggregate disk-to-
disk throughput; Yellowstone, Gordon, Blacklight, Mason, and
Darter achieve ~8 Gbps, 7 Gbps, 4 Gbps, 2.5 Gbps, and 2
Gbps, respectively. In our experiments, we used Stampede as a
source and the other endpoints as destinations and ran at night
and weekends to avoid disrupting other activities. Each result
in §V-C is an average of at least five runs.

We note that requirements and usage reports from science
communities [14], [43] suggest that large-scale data movement
from experimental and observational facilities to a modest
number of large compute facilities is a frequent requirement.
Our experimental setup captures such a scenario.

B. Workload (Traces) Used for Evaluation

We used real traces from Globus GridFTP servers (obtained
from the Globus usage collector [20]) as workloads. These
traces have transfer size and duration information but no
identifiable information such as endpoint IP addresses. We
picked the server that transferred the most bytes in a one-
month period and the log corresponding to the busiest day
(in terms of total bytes) in that period. Since our execution
environment is a production infrastructure in continuous use,
we were limited in the length of our experiments. Thus, we
selected from the chosen 24-hour log several 15-minute traces
with three different loads: the 25%, 45%, and 60% traces,
respectively. Average load of the 24-hour workload was ~25%.
We looked at all non-overlapping 15-minute windows in the 24-
hour period and picked one with the same average load as the
entire workload (25%). The coefficient of variation of 1-minute
average concurrent transfers is approximately the same, too.
We picked one that had the highest load (~60%), and one with
~45% load (which is in between 25% and 60%). We define
load as the total volume of file transfers in the 15-minute trace
divided by the maximum amount of data that the source can
transfer in a 15-minute period. Since the maximum achievable
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throughout for Stampede is 9.2 Gbps, the maximum that it
can transfer in 15 minutes is ~1 TB. Thus, the total transfer
volumes in the 25%, 45%, and 60% traces are ~250 GB, 450
GB, and 600 GB, respectively.

For our experiments, we replay the transfers recorded in
these traces. Since the traces do not include transfer endpoint
identifiers, we distribute transfers randomly among the five
destinations, weighted based on endpoint capacities. For each
trace and for each destination, among the tasks that are >100
MB (all tasks <100 MB are scheduled on arrival), we picked
X% of them randomly and designated them as RC tasks.
We use X = 20, 30, 40 for our evaluation. We assigned a
value function similar to the one shown in Fig. 2 to each RC
task. We evaluated by assigning different value functions (by
changing Slowdowny={3,4} in Eqn. 3 and A={2,5} in Eqn. 4,
Slowdown,,, ., was kept at 2). Because we have a large number
of combinations across these parameters, we present only a
subset of the results here. The trends were similar for others.

C. Evaluating Different RESEAL Schemes

We start our evaluation with the 45% trace. We evaluate all
three RESEAL schemes—RESEAL-Max, RESEAL-MaxEx,
and RESEAL-MaxExNice—and use SEAL and a baseline
scheme called BaseVary as two representative scheduling
methods that do not differentiate based on transfer. In order to
control the impact of RC tasks on BE tasks, RESEAL provides
a hook for the system administrators to control the aggregate
bandwidth that RC tasks can use at any time via the \ factor
described in §IV-F. We evaluate all three schemes of RESEAL
for A = {0.8, 0.9, 1}, indicating that RC tasks can use up to
80%, 90%, and 100%, respectively, of the maximum available
bandwidth at the endpoints. As noted in §III-C, we have
a bi-objective problem—minimizing the average slowdown
of BE transfers and maximizing the aggregate value for RC
transfers. Both metrics introduced in §III-C, normalized average
slowdown (NAS) and normalized aggregate value (NAV), take
a value between 0 and 1, with a value close to 1 being desirable
in each case. Also, in calculating NAS, the average slowdown

for BE tasks, SDp, is obtained by executing all tasks, including
RC tasks as if they were BE tasks, under SEAL.

Fig. 4 shows the performance of nine variations of RESEAL:
{Max, MaxEx, MaxExNice} x A € {0.8,0.9,1}, plus SEAL
and BaseVary. We executed each scheme for three different
fractions of RC tasks and two different values of Slowdowny,
the slowdown value at which an RC task’s value becomes zero.
Fig. 4a shows the performance when 20% of the >100 MB
tasks in the original 45% trace are designated as RC tasks. The
top and bottom graphs are for Slowdowny=3 and Slowdowny=4,
respectively.

We see that all RESEAL schemes are far better than both
BaseVary and SEAL in terms of NAV (x-axis), getting an
aggregate value as much as 90% and 95% of the maximum
aggregate value for Slowdowny=3 and Slowdowny=4, respec-
tively. This is expected because RESEAL schemes differentiate
RC and BE tasks, whereas SEAL and BaseVary schemes
do not. The more significant observation is that we are able
to meet the requirements of RC tasks, while having only a
small impact on BE tasks. RESEAL-MaxExNice scheme
achieves as high as 93% and 95% of the best NAS for
Slowdowny=3 and Slowdowny=4, respectively, for the BE
tasks. All RESEAL schemes do better than BaseVary for
BE tasks even while providing significant value to RC tasks.
The reason is that BaseVary assigns a static concurrency
value for transfers without taking the current load information
into account. RESEAL-MaxExNice, as in the example in §IV,
is the best among the three RESEAL schemes. For example,
RESEAL-MaxExNice A=0.9 achieves ~87% of maximum
aggregate value for RC tasks and ~90% of maximum NAS.

The same trends continue when the percentage of RC tasks
is increased to 30% and 40% of the >100 MB tasks in the
trace (see Figs. 4b and 4c). Not surprisingly, both NAV and
NAS decreases. The decrease in performance is more for
RESEAL-Max (for both objectives) and RESEAL-MaxEx (for
NAS) over RESEAL-MaxExNice. The fact that both Max and
MaxEx prioritize all RC tasks over the BE tasks impacts the
performance of BE tasks more as the percentage of RC tasks
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increases. In addition, the fact that Max does not take the
current value of the RC tasks into account for prioritization
leads to a lower NAV with increasing percentage of RC tasks.

To further examine the tradeoff between the three schemes,
we plot in Fig. 5 the cumulative percentage of RC tasks as
a function of slowdown. We note that MaxExNice has the
fewest RC tasks with slowdown < 1.5, since it gives low priority
to all RC tasks with an xfactor < 1.8 (0.9 x Slowdown,az)
and schedules them only when there is unused bandwidth
after scheduling high-priority RC tasks (whose xfactor > 0.9
X Slowdown,,..) and the BE tasks. However, it has the most
RC tasks with a slowdown < 2 (and 2.5), as it gives the highest
priority to RC tasks with an xfactor > 1.8.

D. Impact of Overall Load

The preceding results were with a single trace (45% load).
To assess performance as the total load on the network varies,
we show in Figs. 6 and 7 results for 25% and 60% traces,
respectively. Since RESEAL-MaxExNice clearly outperforms
both RESEAL-Max and RESEAL-MaxEx, for the other traces,
we present the results of only RESEAL-MaxExNice. We
refer to RESEAL-MaxExNice as just RESEAL from now on.
Also, since the results for Slowdowng=4 are similar to those
for Slowdowny=3, we present results only for Slowdowny=3
for the rest of the traces.

For the 25% trace, the trends for RESEAL are similar to
that for 45%, with both NAS for BE tasks and NAV for RC
tasks being higher than with 45% for all three percentages
of RC tasks (Figs. 6a, 6b, and 6¢c). The performance of both
SEAL and BaseVary is much better for the 25% trace than
for the 45% trace. The reason is that at low loads the average
slowdown of all tasks is already low (~2.5 with SEAL and
~2.8 with BaseVary).

Although RESEAL trends with 60% are similar to those for
45%, we noticed that both NAV for RC tasks and NAS for
BE tasks for 60% are better than those for 45%. This result is
counterintuitive: we expected the performance in terms of both

objectives to be directly proportional to load. We did further
analysis and experiments to explain this observation.

E. Impact of Load Variation

Visual examination of the two traces suggests that load
(within the 15-minute duration) is relatively stable for the
60% trace but varies considerably over time in the 45% trace.
To explore this phenomenon more rigorously, we define load
variation in a trace as follows. Let C;(T'), i € [0..duration(T)],
be the average number of concurrent transfers during minute
i of a trace T of length duration(T) minutes. Then the load
variation of T', V(T') is the coefficient of variation of {C;(T)}.
We find that V(60%) = 0.25 while V(45%) = 0.51. A higher
load variation likely means that there are more concurrent or
overlapping RC tasks when load is high, which makes getting
maximum or high value for all of them difficult. Since there will
also be more BE tasks during high load periods, the negative
impact of RC tasks on BE tasks will also be greater. Thus, we
attribute the observed better performance on the 60% trace to
higher load variation in the 45% trace.

To test this conclusion, we perform experiments with two
more traces: 45% low variation (45%-LV) and 60% high
variation (60%-HV). These traces are from the same GridFTP
server as the others, but a different 24-hour period; V(45%-1LV)
=0.28 and V(60%-LV) = 0.91.

Figs. 8 and 9 show results for 45%-LV and 60%-HV,
respectively. RESEAL performs better on 45%—LV than on
60% (and 45%), in terms of both metrics, and significantly
worse on 60%—HV than on 60%. Note that though NAV for
BaseVary is shown as zero in Figs. 9a, 9b, and 9c, the
aggregate value in all three cases is negative.

Overall, RESEAL’s efficacy depends on both total system
load and load variation over time. Since current networks tend
to be lightly loaded, we can consider the 2 5% results, for which
RESEAL meets RC needs easily with almost no impact on
other transfers, as representative of the common case. With
a 60% load (the highest observed in real traces), RESEAL
is effective if the load variance is modest. We conclude that



by using an appropriate scheduling method, response-critical
transfers can be supported without resource reservations.

VI. RELATED WORK

Computational job scheduling (both parallel and distributed)
has been studied extensively [38], [16], [33]. In contrast, the
scheduling of file transfers among distributed resources has
received less attention [10], [18], [32]. We are aware of only
one effort that considered differentiated services [18], and that
did not involve a bi-objective problem as here.

Several studies have used dedicated network channels to pro-
vide differentiated service for data transfers, both within [19],
[44] and between [22], [40], [35], [42] sites. Others have
investigated the co-reservation of heterogeneous resources,
including storage and network resources [21], [18]. For reasons
presented in §II-B, we pursue a reservationless approach.

Previous work on utility-function-based or user-centric ap-
proaches to scheduling [5], [12], [26], [34], has been performed
in the context of computational jobs. In [29], we developed
a file transfer scheduling algorithm that treats interactive file
transfers and batch transfers separately, where batch transfers
can tolerate significantly longer delay. However, that work did
not consider response-critical tasks.

VII. CONCLUSIONS

We presented a new algorithm, RESEAL, to handle response-
critical (RC) data transfers with minimal impact on other best-
effort (BE) transfers. This algorithm uses user-supplied value
functions for scheduling RC tasks. It treats RC and BE transfers
differently, maximizing the aggregate value for RC tasks while
minimizing the average slowdown for BE tasks. We evaluated
RESEAL by using real traces and on a production system. We
showed that the algorithm can achieve 90% of the maximum
aggregate value for RC tasks with <10% impact on BE tasks
even for logs with average load as high as 60%, when the
percentage of RC tasks in the log is small, as long as the load
variation is not high. The algorithm’s performance decreases
with increasing load, increasing load variation, and increasing
percentage of RC tasks; increased load variation has the highest
impact. Our results show that response-critical transfers can be
conducted without resource reservations, exploiting the existing
overprovisioning of wide-area networks, and through a carefully
designed scheduling method.
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